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In the problem of an m-link manipulator control possessing a singular 2ruth-order mode it is shown that optimal trajectories 
attain a singular mode in a finite time with an infinite number of control switchings. © 2000 Elsevier Science Ltd. All rights 
reserved. 

If  an optimal control problem is  nely generated by a scalar control u, the Pontryagin function can be presented 
in the form H ffi Ho + uHb where H0 and/-/1 are functions of the phase and adjoint variables. If  HI  ~ 0 along 
the trajectory, the control is uniquely determined as a function of time from the maximum condition. The control 
function is piecewise-constant and the corresponding trajectory is piecewise-smooth. A trajectory on which the 
control is not uniquely determined from the maximum condition is called a singular trajectory [1]. If  a problem is 
affme in scalar control, then/-/1 --- 0 along a singular trajectory. In order to determine the control on a singular 
trajectory, it is neces,,ary to differentiate the identity/-/1 -= 0. It is well known that a non-zero coefficient of control 
u can arise for the ~rst time only at an even step of differentiation 2q. The number q is referred to as the order 
of  the singular trajectory. The necessary condition for optimality of a singular trajectory is the following Kelley's 
condition [2] 

(_l)q~u d2qHl ~r, 

The study of singular trajectories and their conjugations with non-singular trajectories served to develop the theory 
of chattering control. A chattering trajectory (ChT) is a trajectory with an infinite number of  control switchings 
in a finite time integral. Chattering trajectories were proved to be typical in [3, 4], that is, it was proved that for 
an open set of  Harniltonian systems of Pontryagin's maximum principle with a scalar control a sub-manifold of 
finite codimensionality exists through each point of which a single-parameter family of ChTs passes. 

One of the causes of chattering is the conjugation of a non-singular trajectory and a singular one of even order. 
It is well known [2] that if a singular trajectory of even order satisfies Kelley's condition in strict form 

(-1)q ~u d2q-~Ht <0 
dt '~ 

then the conjugation of a piecewise-smooth non-singular trajectory with a singular one is non-optimal (the 
Kelley-Kopp-Moyer theorem). Therefore, if an optimal trajectory consists of a singular arc of even order and a 
non-singular arc, then the last one contains an infinite number of control switches. A complete theory of ChTs of 
the second order was constructed in [4, 5]. For problems with singular higher-order modes particular results have 
been obtained in [4]. 

Below we prove that for a certain class of optimal control problems with singular modes of any even order ChTs 
are optimal in the neighbourhood of the singular mode. We prove that in problems of controlling a multilink 
manipulator with elastic joints between links singular modes of high order are realized and optimal trajectories 
are ChTs. 

. 

Consider  the  following p r o b l e m  

S I [ N G U L A R  M O D E S  A N D  C H A T T E R I N G  T R A J E C T O R I E S  
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x~(t)dt-)inf (1.1) 
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Fig. 1. 

.~l=u+j~(x),  k 2 = x l  + f2(x)  . . . . .  k , = x n - i  + f , ( x )  (1.2) 

Herex  = (xl . . . . .  xn) ~ Rn, f (x)  = (ft(x) . . . . .  f~(x)) ~ C**(R n, Rn). The initial conditionx(0) -- x °. The 
scalar control u is bounded: u_ ~< u ~< u+, u_ < 0, u+ > 0. 

We investigate the behaviour of the solutions of problem (1.1), (1.2) in the vicinity of the origin which 
is a singular trajectory. 

Let us consider the control system that is the principal part of system (1.2) 

kl=u, k i = x i _ l ,  2 ~ i ~ n  (1.3) 

It was proved in [4, 5] that in problem (1.1), (1.3) (i.e. whenf(x) --- 0) optimal solutions reach the 
origin in a finite time. The upper bound of the time to reach the origin considered as function of 
an initial point was found. To obtain these results the homogeneity of the problem with respect to 
the action of the one-parameter group G = {gx, ~ > 0} of diffeomorphisms R n was used in [4, 5]: g~(x) 
= (Zx 1 . . . .  , knxn). This group will be called a Fuller group. 

We assume that the perturbationf(x) is small with respect to the principal part of system (1.2). Namely, 
let f(x) be small in the sense of the action of the Fuller group. This means that for a certain constant 
Co > 0 the following bounds 

li"~ IA(gx.(x))l<Co, i = 1  . . . . .  n (1.4) 

hold uniformly in x from the set {x : ] xi I ~< 1, i --- 1 . . . . .  n}. 
Problem (1.1), (1.2) is inhomogeneous with respect to the action of the Fuller group, However, it is 

possible to show that the qualitative behaviour of trajectories is the same as in problem (1.1), (1.3) (with 
f (x)  -- 0). 

For each r > 0 we define the set 

Q, = { x E R "  : Ix i I~r ', i = 1  . . . . .  n} 

For problem (1.1), (1.2), (1.4) the following theorem [6] holds.t 

Theorem 1. A number r ° >~ 0 exists such that for all r ~< r*, the following statements hold. 
1. The optimal trajectory,~ (t), .~ (0) = x ° ~ Q,, exists. 
2. The optimal trajectory 2 (t) reaches the origin in a finite time not exceeding const r. 

Remark. The time bound is uniform in all x ° e Qr and the constant in the bound is independent of r. 

The proof of Theorem 1 is based on the construction of a piecewise-smooth Lyapunov function for control 
system (1.2). This Lyapunov function is the same for all perturbationsf(x) satisfying condition (1.4). 

tSee also MANITA L. A., Asymptotic behaviour of extremals in the vicinity of singular trajectories of high order• Candidate 
dissertation, Moscow, 1996. 
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It is shown in [5] that for problem (1.1), (1.3) withf(x) m 0 and even n optimal trajectories are ChTs. 
Using the results of Theorem 1 we will prove that the existence of chattering solutions is stable with 
respect to a certain class of perturbations. 

Consider a perturbation f(x) of the special form 

fi(x) = ~ tlik X k +hi(x .)  (1.5) 
It=i 

where hi(xn) ~ C~*(R) are non-linear functions that depend only on the variable Xn, and hi(O ) = 0, h;(0) = 0. 
The functionsA(x) (i = 1 . . . . .  n) of the form (1.5) are small with respect to the action of Fuller group (1.4). 

Theorem 2 [6]. For problem (1.1), (1.2), (1.5) the following statements hold. 
1. The origin x -=-= 0 is a singular trajectory of order n. 
2. If n is even, then 5 > 0 exists such that the optimal solutions £ (t), £ (x) = x ° e Q~, r ~< fi, reach the 

origin in finite time with infinite numbers of control switchings. 

Proof. We use Pontryagin's maximum principle. We write the Pontryagin function 

. ~u_. ¥1 < 0 
H=~l|(u+fl(x))+ ~ ¥1(xi_t +f i (x ) ) -x~12=Ho+uHi ,  u= 

i=2 ~U+' ¥ l  >0  

The system of adjoint equations has the form 

bH i 
* i  = - Ox-"~. = -Wi+l  - k=l Y~ U ~/Wk, 1 ~ i <~ n -  1 

, .  ~H " " , = -  =x. - ~ u~¥k  - ~. Ykh~(x.) 
(}X. k=l k=l 

Let us find singular trajectories, i.e. trajectories on which the coefficient of control u in the Pontryagin's 
function equals zero. We have 

H I = ¥ |  - O = ~ w 2  ~ O = ~ . . . ~ ¥ , - - O = ~ x n  m O = ~ . . . = # x l  - - 0  

Thus, the origin is a singular trajectory. Let us calculate its order. We have 

dJ~ =,i =-w2 -VllVl 

d:~ Ht _ 2 2 
~tt-r - -,2 -vH*1 = Vs + k=| Y vk~V~ +v.(V~ +v.~O = v~ + ~=tY a~s~ 

" - %  + 
dtJ_t ,- £ j - ~ ¥ j - t  - ~'- Ot~,j-tf~ = £ j - t  

k=l 

,2( ' 1  " "b ~ {Xk,j_ ] - -~k÷l- -  E Ul&~l E ~ j ~ j  J¢" E amj~m 
k=l I=| m=l 

dr" =-~" e . ¥ . +  E a ~ ¥ k  = e .  x . -  v , . ¥ ~ -  ykhk(x.)  + a ~ =  
k=l k=l k=l = 

,t ~ n 
= ~x. + ],'. ak..+lYk - ~,, ~/khk(x,,) = ~..x~ + F.,,+! Y " " • Ykhk(x,,)+ Fl(¥1 ..... ¥.) 

k:=l k=l k=! 

d n+l HI 

dt  n+l ='"-n/on + ~n+lk=l ~ (fvkh~(x')+ ¥kh~"(xn)Ycn)+ k=t ~ ~ *k = 
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n 

h" =e,,x._~ +E.+l Z %, k(X.)X._~ +F2(¥, . . . . .  ¥ . .x , , )  
k = l  

a"+J-tH~ ~. w~a;;"(x.)x._j+, +F~(~j, ~/,. x, ..... dtn+J. 1 --- EnXn_j+ I "1" En+l . . . .  
k=l 

Xn-j+2) 

d2n -1 HI 

k=l 

a2nH~ ~. Ykhk'(X~)/~+~+t(V,, ~n, Xn, Xl) dt2n = EnU + En+ I . . . ,  . . . ,  
k = l  

where ej = (-1) j+t (j I> 2), and the numbers amj are determined by the recurrence formula 

j -2  
amj=~.jOm.j_l-Otm_l.j_s- ~ ,u  ~ ,  2 ~ j ~ n ,  l ~ m ~ j - l ,  a,, , j=0, m ~ 0  

k=m 

The functions 17/(j = 1, . . . , n + l )  depend only on the adjoint variables ~1 . . . . .  ~ and on the 
phase variables x , , . . . ,  x~-j+2, and Fy(0) = 0 for anyj. 

The principal term in dn+/-1H1/dt n÷j-1 is 

11 

enx,-j+l + Cn+l ~'. Ykh~'(xn)xn-j+t 
k=l 

Differentiation of this term gives a control more rapidly than differentiation of the function F:. Therefore 
the functions Fj have no influence on the order of the singular trajectory and on Kelley's condition. 
Thus, a control appears for the first time at the 2nth differentiation. 

Hence, the origin is a singular trajectory of order n, and if n is even, then the singular trajectory satisfies 
Kelley's necessary condition for optimality in the strict form 

(_l)q..~. d~tnl_ . 

dt -~- - ( - l )  ~. =-l  <0 

Problem (1.1), (1.2), (1.5) satisfies the conditions of Theorem 1. According to Theorem 1, the optimal 
trajectoryx(t) emerging from x ° e Q,  where r is sufficientlysmall, reaches the origin in a finite time 

t I = fi ( x * )  ~ c o n s t  r 

and then remains at zero. The time estimate is uniform in x ° ~ Qr and the constant in the estimate is 
independent ofr. Thusx(t) = 0 when t t> q. Then the control u(t) = 0 when t 1> tl, and from Pontryagin's 
maximum principle it follows that ~l(t) = 0 when t 1> q. From the system of adjoint equations we obtain 
vh(t) = 0 (i = 2 . . . . .  n) when t I> q. Consequently, the optimal trajectory reaches the singular trajectory 
in a finite time q. 

If n is even, then the singular trajectory of problem (1.1), (1.2), (1.5) satisfies all conditions of the 
Kelley-Kopp-Moyer theorem. Hence, the optimal control has an infinite number of switchings in a 
finite time interval. Theorem 2 is proved. 

2. THE P R O B L E M  OF THE C O N T R O L  OF A M U L T I L I N K  
M A N I P U L A T O R  W I T H  E L A S T I C  J O I N T S  B E T W E E N  ITS LINKS 

Investigations of the problems o f  manipulator control (including multilink manipulators) using 
methods from different areas of science complement each other and provide a more complete picture 
of manipulator operation [7-9].t 

tSee also AKULENKO, L. D., BOLOTNIK, N. N. and KAPLUNOV, A. A., Optimization of the control of manipulation 
robots. Preprint No.218, Institute of Problem Mechanics, Russian Academy of Sciences, Moscow, 1983, 72 pp. 

BOISSONNAT, J. D., DEVILLERS, O., PREPARATA, E P. and DONATI, L., Motion planning of legged robots: the spider 
robot problem. Research Report No. 1767, INRIA, France, 1992. 



Optimal operating modes with chattering switchings in manipulator control problems 21 

Optimal control methods enable new effects to be revealed that must be taken into account when 
solving specific application problems. Problems of robot manipulator control with second-order singular 
modes were considered in [8, 9]. 

For the time-optimal problem for a two-link manipulator a complete synthesis containing ChTs was 
constructed in [8]. It was shownt that, in the time-optimal problem for the robot-machine, the optimal 
trajectories are ChTs. 

In the problems of manipulator control considered below singular modes of any even order are 
realized, and optimal trajectories attain a singular mode with chattering. 

A system with a single elastic element. Consider a two-link manipulator. The links are joined by a spring 
of stiffness k. The first link is rigidly connected to a robot arm. A rotational force u, -1  ~< u <~ 1, is 
applied to the end of the second link (Fig. 1). This mechanical system is described by the following 
system of differential equations 

Jz01 - -MgLsinOi - k(Ot -02) ,  J202 = k(O I -02)+ u(t) (2.1) 

The scalar control u satisfies the constraint l u I ~< 1. The initial conditions are 

0,(0)=0]0,  Oi(O)=O~0, 02(0) ffi 020, 02(0)=0~0 

The problem consists in minimizing the following functional 

(Oj - ¥)2dt --~ inf (2.2) 
o 

We put 

MgL O) ~ = / ¥ ,  O, ¥ + - - - ~ s i n ¥ ,  

Theorem 3.. Let IMgL. sin ~1 < 1. Then for problem (2.1), (2.2) the following statements hold. 
1. (01(0, 01(0, 0z(t), 02(0) ~- ~ is a singular fourth-order trajectory. 
2. For all initial positions 0* = (01(0), 01(0), 02(0), 02(0)), sufficiently close to the point ~ ,  the optimal 

control moves the robot arm to position 01 = )' in a finite time t* = t* (0])with an infinite number of 
switchings points in (0, t°). 

Proof. Put 

MgL k k 1 
~ - ~  ~ ~ a 4 ~ al J] ' a2 Jr' a s - j 2 ,  J2 

x4 = O I - ¥ ,  x3 =OI, x2 = - a 2 ( O 2 - ~ / ) + ~ s i n ¥ ,  x I =-a2E) 2 

We define the new control 

= -a2a4u + ota s sin ¥ 

Put t~  = k(1 ~ MgL sin T)/(JIJ2). If u = 1, then ~ = (t+; if u = -1, then ~ = --or_. From the 
assumption IMgL sin TI < 1 it follows that ot~. > 0. Problem (2.1), (2.2) can be written in the following 
form 

x[(t)dt --~ inf (2.3) 
0 

tSee BOISSONNAT, J.-D, CEREZO, A. and LEBLOND, J., A note on shortest paths in the plane subject to a constraint 
on the derivative of the curvature. Research Report No. 2160. 1NRIA, France, 1994. 

DEGTIARIOVA-KOSTOVA, E. and KOSTOV, V., Irregularity of optimal trajectories in a control problem for a car-like robot. 
Research Report No. 3411. INRIA, France, 1998. 
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Xl = ~ -- a2aaX4 - aaX2, x2 = Xl 

"~3 = X2 + X4 (al Cos ']l' + a2) + alA(X4 ) c o s  7 + aiB(x4) sin 7, ,~4 = xs 
(2.4) 

where 

A(x4) = sinx 4 - x ,  I = O(x~), B(x,i) = cosx 4 - 1 = O(x~) 

The control u satisfies the constraint - a  ~< u ~< a+. The initial conditions have the form 

x I (0) = -a2O~0, X2(0) = -a2(O~ - 7) + al sin 7 

xs(0) = 0~0, x4(0) = 010 - 7 

We will show that problem (2.3), (2.4) satisfies the conditions of Theorem 2. Put 

fj ( x ) = - a a x  2 - a2aax 4 

fa(x) = x4(al cos7 + a 2) + alA(x 4)cos 7 + al B(x4) sin y 

Then 

(2.5) 

.~1 ----/~ -I- f ]  (X),  .~2 ----- XI,  .~3~'X2"l'f3(x), X4=X3 

The functions f l(X) and fa(X) belong to class (1.5) considered in Theorem 2. In fact, put v12 = -a  3, 
v14 = --a2a3, v34 = -alcosy, the other vik are equal to zero, and 

h s ( x 4 ) = a l A ( X 4 ) C O S 7  +alB(X4)s in~[ ,  h i --0,  i = 1 , 2 , 4  

From the definition of the functionsA(x4) and B(x4) it follows that hs(0) = h~(0). 
Therefore, Theorem 2 can be applied to problem (2.3), (2.4). Consequently, the origin is a singular 

fourth-order trajectory. From Theorem 2 it follows that, for initial conditions (2.5) from a sufficiently 
small neighbourhood of the origin, the optimal solutions reach the origin in a finite time t o with an infinite 
number of control switches in (0, to). 

Since problems (2.1), (2.2) and .(2.3), (2.4) are equivalent' the above proof means, in terms of problem 
(2.1), (2.2), that (01(t), 01(t), 02(0, 02(0) ~= ~ is a singular fourth-order trajectory. The optimal trajectories 
of problem (2.1), (2.2) reach the singular trajectory with an infinite number of control switches in a 
finite time interval. Thus, if initial state 0 ° is sufficiently close to the point ~ then to minimize functional 
(2.2) it is necessary to move the robot arm to the position 

oe~ °I 

Fig. 2. 
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0 t = Y ,  02 = y + MgL sin y 
k 

in a finite time with an infinite number of switchings of the force u. Theorem 3 is proved. 

A system with several elastic elements. Based on manipulator model (2.1), (2.2), it is possible to propose 
examples of controlled mechanical systems possessing singular trajectories of any even order, which 
are reached by optimal solutions in a finite time with an infinite number of control switchings. 

Consider a multilink manipulator. A manipulator consists of m links successively joined by springs 
of stiffnesses k 1, . . . . .  k,,,_l. The first link is rigidly connected to the robot arm. A rotational force u, 
-1  ~< u <~ 1, is applied to the ruth link (Fig. 2). This mechanical system is described by the following 
system of differential equations 

Jr01 -~ - M g L  sin 01 - /q  (0t - 02) 

J202 = -k  I (02 - 01 ) - k 2 (02 - 03) 
(2.6) 

JiOi =-ki_l(Oi-Oi_l)-ki(Oi-Oi+l) 
° . .  

JmOm = -kin_ 1 (0ra - 0m_ 1) + u(t) 

The scalar control u satisfies the constraint I u I ~< 1. The initial conditions are 

0i(0) = 0i0, i = l  . . . . .  ra 0/(0) = 0i0, " 

As in the case when m = 2, the problem consists of minimizing the following functional 

(01 -y)2dt--* inf 
0 

(2.7) 

We put 

~m = Y, 0, y + - - ~ - - s i n y ,  0 . . . . .  y+MgLsiny~.i~l (ki)-I' 0 

The main resutlt for problem (2.6), (2.7) is as follows. 

Theore.m 4. Let IMgL si.n y[ < 1. Then the following statements hold. 
1. (01(0, 01(0 . . . . .  0re(t), 0re(t)) --- ~m .is a singular trajectory of order 2m. 
2. For all initial positions 0 ° = (01(0), 0 1 ( 0 ) , . . . ,  0m(0), 0m(0)) sufficiently close to the point ~,,,, the 
optimal trajectories reach position ~m in a finite time with an infinite number of control switchings. 

Proof. T h e  proof is similar tO the analysis in the case of two-link robot. It is based on the reduction 
of the problem to a form that satisfies the conditions of Theorem 2. We put 

xl = 0 t - Y ,  x2=0t  

-- - - 1 - I  x2m Or+ I - y - MgL sin y ~ ki 
i=l ki i=l "~i 

. I k l  , 
x2/+z = 0t+ll'I 1 <~ 1 ~ m - 1 

i=l JT/ 

The point ~,~ corresponds to the origin in (xl, x2 . . . . .  X2m) coordinates. We define a new control 

= k l " ' k m - t . ( u -  MgLs iny )  
Jl ... Jm 
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We put 

f2(x) = MgLc°sy  sin x I -4 
Jl 

MgLsin y (1 - cosx 1) 
Ji 

k 2 1-1 k1-1 + kt x 
' 2 1 - 1  ' 

Jl - IJI  "]1 
A l ( X )  = x2t-s  

f2m(x) k2m-I k ' - I  
X2m_ 3 -- X2m_ I Y._,J. J. 

f21+l(X)=O, O ~ l ~ m - - 1  

We write the system in (xl, x2 . . . . .  X2m) coordinates 

x21-I -- x2I, :c2t = x2t+l + f2t(x), 

-r2,.-I = X2m, "r2,n = u + f2m(x) 

We reverse the numbering of the indices, i.e. we put 

Zl = X2m-I+l, ~ ( Z )  = f2,,-I+IfX), 

2 ~ l ~ m - I  

l ~ l < ~ m - I  

l<~l<~2m 

Problem (2.6), (2.7) in (zl, z2 . . . . .  Z2m) coordinates has the form 

Z~m(t)dt ~ inf 
o ( 2 . 8 )  

Zl = ~ +.~l (z), z2 = Zl, z21-1 = z21-2 +.f21-|(z), z21 = z21-i, 2 ~< l ~ m 

The perturbation f (z)  = 071(z),fE(z) . . . . .  YE~(Z)) belongs to class (1.5). Therefore, Theorem 2 can 
be applied to problem (2.8). For problem (2.6), (2.7) it means that the point ~,,, is a singular trajectory 
of order 2m. And optimal trajectories attain the singular trajectory with an infinite number of control 
switchings in a finite time. 

Thus, if the initial state 0 ° is sufficiently close to the point ~m, then to minimize functional (2.7) it 
is necessary to move the robot arm to the position 

m-I  
01 =7,  02 = 7 + M g L s i n 7  . . . . .  Om = 7 + M g L s i n 7 ~ ,  ki "1 

kl iffil 

in a finite time with an infinite number of switchings of the force u. Theorem 4 is proved. 
This research was supported by the Russian Foundation for Basic Research (98-01-00535) and the 
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